伺服電機(jī)編碼器相位與轉(zhuǎn)子磁極相位零點(diǎn)如何對(duì)齊的問(wèn)題
永磁交流伺服電機(jī)的編碼器相位為何要與轉(zhuǎn)子磁極相位對(duì)齊
其唯一目的就是要達(dá)成矢量控制的目標(biāo),使d軸勵(lì)磁分量和q軸出力分量解耦,令永磁交流伺服電機(jī)定子繞組產(chǎn)生的電磁場(chǎng)始終正交于轉(zhuǎn)子永磁場(chǎng),從而獲得最佳的出力效果,即“類直流特性”,這種控制方法也被稱為磁場(chǎng)定向控制(FOC),達(dá)成FOC控制目標(biāo)的外在表現(xiàn)就是永磁交流伺服電機(jī)的“相電流”波形始終與“相反電勢(shì)”波形保持一致,如下圖所示:
因此反推可知,只要想辦法令永磁交流伺服電機(jī)的“相電流”波形始終與“相反電勢(shì)”波形保持一致,就可以達(dá)成FOC控制目標(biāo),使永磁交流伺服電機(jī)的初級(jí)電磁場(chǎng)與磁極永磁場(chǎng)正交,即波形間互差90度電角度,如下圖所示:
如何想辦法使永磁交流伺服電機(jī)的“相電流”波形始終與“相反電勢(shì)”波形保持一致呢?由圖1可知,只要能夠隨時(shí)檢測(cè)到正弦型反電勢(shì)波形的電角度相位,然后就可以相對(duì)容易地根據(jù)此相位生成與反電勢(shì)波形一致的正弦型相電流波形了,因此相位對(duì)齊就可以轉(zhuǎn)化為編碼器相位與反電勢(shì)波形相位的對(duì)齊關(guān)系。
在實(shí)際操作中,歐美廠商習(xí)慣于采用給電機(jī)的繞組通以小于額定電流的直流電流使電機(jī)轉(zhuǎn)子定向的方法來(lái)對(duì)齊編碼器和轉(zhuǎn)子磁極的相位。當(dāng)電機(jī)的繞組通入小于額定電流的直流電流時(shí),在無(wú)外力條件下,初級(jí)電磁場(chǎng)與磁極永磁場(chǎng)相互作用,會(huì)相互吸引并定位至互差0度相位的平衡位置上,如下圖所示:
對(duì)比上面的圖3和圖2可見,雖然U相繞組(紅色)的位置同處于電磁場(chǎng)波形的峰值中心(特定角度),但FOC控制下,U相中心與永磁體的q軸對(duì)齊,而空載定向時(shí),U相中心卻與d軸對(duì)齊,也就實(shí)現(xiàn)了a軸或α軸與d軸間的對(duì)齊關(guān)系,此時(shí)相位對(duì)齊到電角度0度,電機(jī)繞組中施加的轉(zhuǎn)子定向電流的方向?yàn)閁相入,VW出,由于V相與W相是并聯(lián)關(guān)系,流經(jīng)V相和W相的電流有可能出現(xiàn)不平衡,從而影響轉(zhuǎn)子定向的準(zhǔn)確性。
實(shí)用化的轉(zhuǎn)子定向電流施加方法是U入,V出,即U相與V相串聯(lián),可獲得幅值完全一致的U相和V相電流,有利于定向的準(zhǔn)確性,此時(shí)U相繞組(紅色)的位置與d軸差30度電角度,即a軸或α軸對(duì)齊到與d差(負(fù))30度的電角度位置上,如圖所示
上述兩種轉(zhuǎn)子定向方法對(duì)應(yīng)的繞組相反電勢(shì)波形和線反電勢(shì),以及電角度的關(guān)系如下圖所示,棕色線為a軸或α軸與d軸對(duì)齊,即直接對(duì)齊到電角度0點(diǎn),紫色線為a軸或α軸對(duì)齊到與d差(負(fù))30度的電角度位置,即對(duì)齊到-30度電角度點(diǎn):
d、q軸矢量與a、b、c軸或α、β軸之間的角度的關(guān)系如下圖所示,棕色線d軸與a軸或α軸對(duì)齊,即直接對(duì)齊到電角度0點(diǎn),紫色線為d‘軸與a軸或α軸相差30度,即對(duì)齊到-30度電角度點(diǎn):
增量式編碼器的相位對(duì)齊方式 在此討論中,增量式編碼器的輸出信號(hào)為方波信號(hào),又可以分為帶換相信號(hào)的增量式編碼器和普通的增量式編碼器,普通的增量式編碼器具備兩相正交方波脈沖輸出信號(hào)A和B,以及零位信號(hào)Z;帶換相信號(hào)的增量式編碼器除具備ABZ輸出信號(hào)外,還具備互差120度的電子換相信號(hào)UVW,UVW各自的每轉(zhuǎn)周期數(shù)與電機(jī)轉(zhuǎn)子的磁極對(duì)數(shù)一致。帶換相信號(hào)的增量式編碼器的UVW電子換相信號(hào)的相位與轉(zhuǎn)子磁極相位,或曰電角度相位之間的對(duì)齊方法如下:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
2.用示波器觀察編碼器的U相信號(hào)和Z信號(hào);
3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置;
4.一邊調(diào)整,一邊觀察編碼器U相信號(hào)跳變沿,和Z信號(hào),直到Z信號(hào)穩(wěn)定在高電平上(在此默認(rèn)Z信號(hào)的常態(tài)為低電平),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),Z信號(hào)都能穩(wěn)定在高電平上,則對(duì)齊有效。
撤掉直流電源后,驗(yàn)證如下:
1.用示波器觀察編碼器的U相信號(hào)和電機(jī)的UV線反電勢(shì)波形;
2.轉(zhuǎn)動(dòng)電機(jī)軸,編碼器的U相信號(hào)上升沿與電機(jī)的UV線反電勢(shì)波形由低到高的過(guò)零點(diǎn)重合,編碼器的Z信號(hào)也出現(xiàn)在這個(gè)過(guò)零點(diǎn)上。
上述驗(yàn)證方法,也可以用作對(duì)齊方法。
需要注意的是,此時(shí)增量式編碼器的U相信號(hào)的相位零點(diǎn)即與電機(jī)UV線反電勢(shì)的相位零點(diǎn)對(duì)齊,由于電機(jī)的U相反電勢(shì),與UV線反電勢(shì)之間相差30度,因而這樣對(duì)齊后,增量式編碼器的U相信號(hào)的相位零點(diǎn)與電機(jī)U相反電勢(shì)的-30度相位點(diǎn)對(duì)齊,而電機(jī)電角度相位與U相反電勢(shì)波形的相位一致,所以此時(shí)增量式編碼器的U相信號(hào)的相位零點(diǎn)與電機(jī)電角度相位的-30度點(diǎn)對(duì)齊。
有些伺服企業(yè)習(xí)慣于將編碼器的U相信號(hào)零點(diǎn)與電機(jī)電角度的零點(diǎn)直接對(duì)齊,為達(dá)到此目的,可以:
1.用3個(gè)阻值相等的電阻接成星型,然后將星型連接的3個(gè)電阻分別接入電機(jī)的UVW三相繞組引線;
2.以示波器觀察電機(jī)U相輸入與星型電阻的中點(diǎn),就可以近似得到電機(jī)的U相反電勢(shì)波形;
3.依據(jù)操作的方便程度,調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置,或者編碼器外殼與電機(jī)外殼的相對(duì)位置;
4.一邊調(diào)整,一邊觀察編碼器的U相信號(hào)上升沿和電機(jī)U相反電勢(shì)波形由低到高的過(guò)零點(diǎn),最終使上升沿和過(guò)零點(diǎn)重合,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系,完成對(duì)齊。
由于普通增量式編碼器不具備UVW相位信息,而Z信號(hào)也只能反映一圈內(nèi)的一個(gè)點(diǎn)位,不具備直接的相位對(duì)齊潛力,因而不作為本討論的話題。
絕對(duì)式編碼器的相位對(duì)齊方式 絕對(duì)式編碼器的相位對(duì)齊對(duì)于單圈和多圈而言,差別不大,其實(shí)都是在一圈內(nèi)對(duì)齊編碼器的檢測(cè)相位與電機(jī)電角度的相位。早期的絕對(duì)式編碼器會(huì)以單獨(dú)的引腳給出單圈相位的最高位的電平,利用此電平的0和1的翻轉(zhuǎn),也可以實(shí)現(xiàn)編碼器和電機(jī)的相位對(duì)齊,方法如下:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
2.用示波器觀察絕對(duì)編碼器的最高計(jì)數(shù)位電平信號(hào);
3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置;
4.一邊調(diào)整,一邊觀察最高計(jì)數(shù)位信號(hào)的跳變沿,直到跳變沿準(zhǔn)確出現(xiàn)在電機(jī)軸的定向平衡位置處,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),跳變沿都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。
這類絕對(duì)式編碼器目前已經(jīng)被采用EnDAT,BiSS,Hyperface等串行協(xié)議,以及日系專用串行協(xié)議的新型絕對(duì)式編碼器廣泛取代,因而最高位信號(hào)就不符存在了,此時(shí)對(duì)齊編碼器和電機(jī)相位的方法也有所變化,其中一種非常實(shí)用的方法是利用編碼器內(nèi)部的EEPROM,存儲(chǔ)編碼器隨機(jī)安裝在電機(jī)軸上后實(shí)測(cè)的相位,具體方法如下:
1.將編碼器隨機(jī)安裝在電機(jī)上,即固結(jié)編碼器轉(zhuǎn)軸與電機(jī)軸,以及編碼器外殼與電機(jī)外殼;
2.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
3.用伺服驅(qū)動(dòng)器讀取絕對(duì)編碼器的單圈位置值,并存入編碼器內(nèi)部記錄電機(jī)電角度初始相位的EEPROM中;
4.對(duì)齊過(guò)程結(jié)束。
由于此時(shí)電機(jī)軸已定向于電角度相位的-30度方向,因此存入的編碼器內(nèi)部EEPROM中的位置檢測(cè)值就對(duì)應(yīng)電機(jī)電角度的-30度相位。此后,驅(qū)動(dòng)器將任意時(shí)刻的單圈位置檢測(cè)數(shù)據(jù)與這個(gè)存儲(chǔ)值做差,并根據(jù)電機(jī)極對(duì)數(shù)進(jìn)行必要的換算,再加上-30度,就可以得到該時(shí)刻的電機(jī)電角度相位。
這種對(duì)齊方式需要編碼器和伺服驅(qū)動(dòng)器的支持和配合方能實(shí)現(xiàn),日系伺服的編碼器相位之所以不便于最終用戶直接調(diào)整的根本原因就在于不肯向用戶提供這種對(duì)齊方式的功能界面和操作方法。這種對(duì)齊方法的一大好處是,只需向電機(jī)繞組提供確定相序和方向的轉(zhuǎn)子定向電流,無(wú)需調(diào)整編碼器和電機(jī)軸之間的角度關(guān)系,因而編碼器可以以任意初始角度直接安裝在電機(jī)上,且無(wú)需精細(xì),甚至簡(jiǎn)單的調(diào)整過(guò)程,操作簡(jiǎn)單,工藝性好。
如果絕對(duì)式編碼器既沒(méi)有可供使用的EEPROM,又沒(méi)有可供檢測(cè)的最高計(jì)數(shù)位引腳,則對(duì)齊方法會(huì)相對(duì)復(fù)雜。如果驅(qū)動(dòng)器支持單圈絕對(duì)位置信息的讀出和顯示,則可以考慮:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
2.利用伺服驅(qū)動(dòng)器讀取并顯示絕對(duì)編碼器的單圈位置值;
3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置;
4.經(jīng)過(guò)上述調(diào)整,使顯示的單圈絕對(duì)位置值充分接近根據(jù)電機(jī)的極對(duì)數(shù)折算出來(lái)的電機(jī)-30度電角度所應(yīng)對(duì)應(yīng)的單圈絕對(duì)位置點(diǎn),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),上述折算位置點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。
如果用戶連絕對(duì)值信息都無(wú)法獲得,那么就只能借助原廠的專用工裝,一邊檢測(cè)絕對(duì)位置檢測(cè)值,一邊檢測(cè)電機(jī)電角度相位,利用工裝,調(diào)整編碼器和電機(jī)的相對(duì)角位置關(guān)系,將編碼器相位與電機(jī)電角度相位相互對(duì)齊,然后再鎖定。這樣一來(lái),用戶就更加無(wú)從自行解決編碼器的相位對(duì)齊問(wèn)題了。
個(gè)人推薦采用在EEPROM中存儲(chǔ)初始安裝位置的方法,簡(jiǎn)單,實(shí)用,適應(yīng)性好,便于向用戶開放,以便用戶自行安裝編碼器,并完成電機(jī)電角度的相位整定。
正余弦編碼器的相位對(duì)齊方式 普通的正余弦編碼器具備一對(duì)正交的sin,cos 1Vp-p信號(hào),相當(dāng)于方波信號(hào)的增量式編碼器的AB正交信號(hào),每圈會(huì)重復(fù)許許多多個(gè)信號(hào)周期,比如2048等;以及一個(gè)窄幅的對(duì)稱三角波Index信號(hào),相當(dāng)于增量式編碼器的Z信號(hào),一圈一般出現(xiàn)一個(gè);這種正余弦編碼器實(shí)質(zhì)上也是一種增量式編碼器。另一種正余弦編碼器除了具備上述正交的sin、cos信號(hào)外,還具備一對(duì)一圈只出現(xiàn)一個(gè)信號(hào)周期的相互正交的1Vp-p的正弦型C、D信號(hào),如果以C信號(hào)為sin,則D信號(hào)為cos,通過(guò)sin、cos信號(hào)的高倍率細(xì)分技術(shù),不僅可以使正余弦編碼器獲得比原始信號(hào)周期更為細(xì)密的名義檢測(cè)分辨率,比如2048線的正余弦編碼器經(jīng)2048細(xì)分后,就可以達(dá)到每轉(zhuǎn)400多萬(wàn)線的名義檢測(cè)分辨率,當(dāng)前很多歐美伺服廠家都提供這類高分辨率的伺服系統(tǒng),而國(guó)內(nèi)廠家尚不多見;此外帶C、D信號(hào)的正余弦編碼器的C、D信號(hào)經(jīng)過(guò)細(xì)分后,還可以提供較高的每轉(zhuǎn)絕對(duì)位置信息,比如每轉(zhuǎn)2048個(gè)絕對(duì)位置,因此帶C、D信號(hào)的正余弦編碼器可以視作一種模擬式的單圈絕對(duì)編碼器。
采用這種編碼器的伺服電機(jī)的初始電角度相位對(duì)齊方式如下:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
2.用示波器觀察正余弦編碼器的C信號(hào)波形;
3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置;
4.一邊調(diào)整,一邊觀察C信號(hào)波形,直到由低到高的過(guò)零點(diǎn)準(zhǔn)確出現(xiàn)在電機(jī)軸的定向平衡位置處,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),過(guò)零點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。
撤掉直流電源后,驗(yàn)證如下:
1.用示波器觀察編碼器的C相信號(hào)和電機(jī)的UV線反電勢(shì)波形;
2.轉(zhuǎn)動(dòng)電機(jī)軸,編碼器的C相信號(hào)由低到高的過(guò)零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過(guò)零點(diǎn)重合。
這種驗(yàn)證方法,也可以用作對(duì)齊方法。
此時(shí)C信號(hào)的過(guò)零點(diǎn)與電機(jī)電角度相位的-30度點(diǎn)對(duì)齊。
如果想直接和電機(jī)電角度的0度點(diǎn)對(duì)齊,可以考慮:
1.用3個(gè)阻值相等的電阻接成星型,然后將星型連接的3個(gè)電阻分別接入電機(jī)的UVW三相繞組引線;
2.以示波器觀察電機(jī)U相輸入與星型電阻的中點(diǎn),就可以近似得到電機(jī)的U相反電勢(shì)波形;
3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置;
4.一邊調(diào)整,一邊觀察編碼器的C相信號(hào)由低到高的過(guò)零點(diǎn)和電機(jī)U相反電勢(shì)波形由低到高的過(guò)零點(diǎn),最終使2個(gè)過(guò)零點(diǎn)重合,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系,完成對(duì)齊。
由于普通正余弦編碼器不具備一圈之內(nèi)的相位信息,而Index信號(hào)也只能反映一圈內(nèi)的一個(gè)點(diǎn)位,不具備直接的相位對(duì)齊潛力,因而在此也不作為討論的話題。
如果可接入正余弦編碼器的伺服驅(qū)動(dòng)器能夠?yàn)橛脩籼峁⿵腃、D中獲取的單圈絕對(duì)位置信息,則可以考慮:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
2.利用伺服驅(qū)動(dòng)器讀取并顯示從C、D信號(hào)中獲取的單圈絕對(duì)位置信息;
3.調(diào)整旋變軸與電機(jī)軸的相對(duì)位置;
4.經(jīng)過(guò)上述調(diào)整,使顯示的絕對(duì)位置值充分接近根據(jù)電機(jī)的極對(duì)數(shù)折算出來(lái)的電機(jī)-30度電角度所應(yīng)對(duì)應(yīng)的絕對(duì)位置點(diǎn),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),上述折算絕對(duì)位置點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。
此后可以在撤掉直流電源后,得到與前面基本相同的對(duì)齊驗(yàn)證效果:
1.用示波器觀察正余弦編碼器的C相信號(hào)和電機(jī)的UV線反電勢(shì)波形;
2.轉(zhuǎn)動(dòng)電機(jī)軸,驗(yàn)證編碼器的C相信號(hào)由低到高的過(guò)零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過(guò)零點(diǎn)重合。
如果利用驅(qū)動(dòng)器內(nèi)部的EEPROM等非易失性存儲(chǔ)器,也可以存儲(chǔ)正余弦編碼器隨機(jī)安裝在電機(jī)軸上后實(shí)測(cè)的相位,具體方法如下:
1.將正余弦隨機(jī)安裝在電機(jī)上,即固結(jié)編碼器轉(zhuǎn)軸與電機(jī)軸,以及編碼器外殼與電機(jī)外殼;
2.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
3.用伺服驅(qū)動(dòng)器讀取由C、D信號(hào)解析出來(lái)的單圈絕對(duì)位置值,并存入驅(qū)動(dòng)器內(nèi)部記錄電機(jī)電角度初始安裝相位的EEPROM等非易失性存儲(chǔ)器中;
4.對(duì)齊過(guò)程結(jié)束。
由于此時(shí)電機(jī)軸已定向于電角度相位的-30度方向,因此存入的驅(qū)動(dòng)器內(nèi)部EEPROM等非易失性存儲(chǔ)器中的位置檢測(cè)值就對(duì)應(yīng)電機(jī)電角度的-30度相位。此后,驅(qū)動(dòng)器將任意時(shí)刻由編碼器解析出來(lái)的與電角度相關(guān)的單圈絕對(duì)位置值與這個(gè)存儲(chǔ)值做差,并根據(jù)電機(jī)極對(duì)數(shù)進(jìn)行必要的換算,再加上-30度,就可以得到該時(shí)刻的電機(jī)電角度相位。
這種對(duì)齊方式需要伺服驅(qū)動(dòng)器的在國(guó)內(nèi)和操作上予以支持和配合方能實(shí)現(xiàn),而且由于記錄電機(jī)電角度初始相位的EEPROM等非易失性存儲(chǔ)器位于伺服驅(qū)動(dòng)器中,因此一旦對(duì)齊后,電機(jī)就和驅(qū)動(dòng)器事實(shí)上綁定了,如果需要更換電機(jī)、正余弦編碼器、或者驅(qū)動(dòng)器,都需要重新進(jìn)行初始安裝相位的對(duì)齊操作,并重新綁定電機(jī)和驅(qū)動(dòng)器的配套關(guān)系。
旋轉(zhuǎn)變壓器的相位對(duì)齊方式 旋轉(zhuǎn)變壓器簡(jiǎn)稱旋變,是由經(jīng)過(guò)特殊電磁設(shè)計(jì)的高性能硅鋼疊片和漆包線構(gòu)成的,相比于采用光電技術(shù)的編碼器而言,具有耐熱,耐振。耐沖擊,耐油污,甚至耐腐蝕等惡劣工作環(huán)境的適應(yīng)能力,因而為武器系統(tǒng)等工況惡劣的應(yīng)用廣泛采用,一對(duì)極(單速)的旋變可以視作一種單圈絕對(duì)式反饋系統(tǒng),應(yīng)用也最為廣泛,因而在此僅以單速旋變?yōu)橛懻搶?duì)象,多速旋變與伺服電機(jī)配套,個(gè)人認(rèn)為其極對(duì)數(shù)最好采用電機(jī)極對(duì)數(shù)的約數(shù),一便于電機(jī)度的對(duì)應(yīng)和極對(duì)數(shù)分解。
旋變的信號(hào)引線一般為6根,分為3組,分別對(duì)應(yīng)一個(gè)激勵(lì)線圈,和2個(gè)正交的感應(yīng)線圈,激勵(lì)線圈接受輸入的正弦型激勵(lì)信號(hào),感應(yīng)線圈依據(jù)旋變轉(zhuǎn)定子的相互角位置關(guān)系,感應(yīng)出來(lái)具有SIN和COS包絡(luò)的檢測(cè)信號(hào)。旋變SIN和COS輸出信號(hào)是根據(jù)轉(zhuǎn)定子之間的角度對(duì)激勵(lì)正弦信號(hào)的調(diào)制結(jié)果,如果激勵(lì)信號(hào)是sinωt,轉(zhuǎn)定子之間的角度為θ,則SIN信號(hào)為sinωt×sinθ,則COS信號(hào)為sinωt×cosθ,根據(jù)SIN,COS信號(hào)和原始的激勵(lì)信號(hào),通過(guò)必要的檢測(cè)電路,就可以獲得較高分辨率的位置檢測(cè)結(jié)果,目前商用旋變系統(tǒng)的檢測(cè)分辨率可以達(dá)到每圈2的12次方,即4096,而科學(xué)研究和航空航天系統(tǒng)甚至可以達(dá)到2的20次方以上,不過(guò)體積和成本也都非?捎^。
商用旋變與伺服電機(jī)電角度相位的對(duì)齊方法如下:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出;
2.然后用示波器觀察旋變的SIN線圈的信號(hào)引線輸出;
3.依據(jù)操作的方便程度,調(diào)整電機(jī)軸上的旋變轉(zhuǎn)子與電機(jī)軸的相對(duì)位置,或者旋變定子與電機(jī)外殼的相對(duì)位置;
4.一邊調(diào)整,一邊觀察旋變SIN信號(hào)的包絡(luò),一直調(diào)整到信號(hào)包絡(luò)的幅值完全歸零,鎖定旋變;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),信號(hào)包絡(luò)的幅值過(guò)零點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效 。
撤掉直流電源,進(jìn)行對(duì)齊驗(yàn)證:
1.用示波器觀察旋變的SIN信號(hào)和電機(jī)的UV線反電勢(shì)波形;
2.轉(zhuǎn)動(dòng)電機(jī)軸,驗(yàn)證旋變的SIN信號(hào)包絡(luò)過(guò)零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過(guò)零點(diǎn)重合。
這個(gè)驗(yàn)證方法,也可以用作對(duì)齊方法。
此時(shí)SIN信號(hào)包絡(luò)的過(guò)零點(diǎn)與電機(jī)電角度相位的-30度點(diǎn)對(duì)齊。
如果想直接和電機(jī)電角度的0度點(diǎn)對(duì)齊,可以考慮:
1.用3個(gè)阻值相等的電阻接成星型,然后將星型連接的3個(gè)電阻分別接入電機(jī)的UVW三相繞組引線;
2.以示波器觀察電機(jī)U相輸入與星型電阻的中點(diǎn),就可以近似得到電機(jī)的U相反電勢(shì)波形;
3.依據(jù)操作的方便程度,調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置,或者編碼器外殼與電機(jī)外殼的相對(duì)位置;
4.一邊調(diào)整,一邊觀察旋變的SIN信號(hào)包絡(luò)的過(guò)零點(diǎn)和電機(jī)U相反電勢(shì)波形由低到高的過(guò)零點(diǎn),最終使這2個(gè)過(guò)零點(diǎn)重合,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系,完成對(duì)齊。
需要指出的是,在上述操作中需有效區(qū)分旋變的SIN包絡(luò)信號(hào)中的正半周和負(fù)半周。由于SIN信號(hào)是以轉(zhuǎn)定子之間的角度為θ的sinθ值對(duì)激勵(lì)信號(hào)的調(diào)制結(jié)果,因而與sinθ的正半周對(duì)應(yīng)的SIN信號(hào)包絡(luò)中,被調(diào)制的激勵(lì)信號(hào)與原始激勵(lì)信號(hào)同相,而與sinθ的負(fù)半周對(duì)應(yīng)的SIN信號(hào)包絡(luò)中,被調(diào)制的激勵(lì)信號(hào)與原始激勵(lì)信號(hào)反相,據(jù)此可以區(qū)別判斷旋變輸出的SIN包絡(luò)信號(hào)波形中的正半周和負(fù)半周,對(duì)齊時(shí),需要取sinθ由負(fù)半周向正半周過(guò)渡點(diǎn)對(duì)應(yīng)的SIN包絡(luò)信號(hào)的過(guò)零點(diǎn),如果取反了,或者未加準(zhǔn)確判斷的話,對(duì)齊后的電角度有可能錯(cuò)位180度,從而有可能造成速度外環(huán)進(jìn)入正反饋。
如果可接入旋變的伺服驅(qū)動(dòng)器能夠?yàn)橛脩籼峁⿵男冃盘?hào)中獲取的與電機(jī)電角度相關(guān)的絕對(duì)位置信息,則可以考慮:
1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
2.利用伺服驅(qū)動(dòng)器讀取并顯示從旋變信號(hào)中獲取的與電機(jī)電角度相關(guān)的絕對(duì)位置信息;
3.依據(jù)操作的方便程度,調(diào)整旋變軸與電機(jī)軸的相對(duì)位置,或者旋變外殼與電機(jī)外殼的相對(duì)位置;
4.經(jīng)過(guò)上述調(diào)整,使顯示的絕對(duì)位置值充分接近根據(jù)電機(jī)的極對(duì)數(shù)折算出來(lái)的電機(jī)-30度電角度所應(yīng)對(duì)應(yīng)的絕對(duì)位置點(diǎn),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系;
5.來(lái)回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),上述折算絕對(duì)位置點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。
此后可以在撤掉直流電源后,得到與前面基本相同的對(duì)齊驗(yàn)證效果:
1.用示波器觀察旋變的SIN信號(hào)和電機(jī)的UV線反電勢(shì)波形;
2.轉(zhuǎn)動(dòng)電機(jī)軸,驗(yàn)證旋變的SIN信號(hào)包絡(luò)過(guò)零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過(guò)零點(diǎn)重合。
如果利用驅(qū)動(dòng)器內(nèi)部的EEPROM等非易失性存儲(chǔ)器,也可以存儲(chǔ)旋變隨機(jī)安裝在電機(jī)軸上后實(shí)測(cè)的相位,具體方法如下:
1.將旋變隨機(jī)安裝在電機(jī)上,即固結(jié)旋變轉(zhuǎn)軸與電機(jī)軸,以及旋變外殼與電機(jī)外殼;
2.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;
3.用伺服驅(qū)動(dòng)器讀取由旋變解析出來(lái)的與電角度相關(guān)的絕對(duì)位置值,并存入驅(qū)動(dòng)器內(nèi)部記錄電機(jī)電角度初始安裝相位的EEPROM等非易失性存儲(chǔ)器中;
4.對(duì)齊過(guò)程結(jié)束。
由于此時(shí)電機(jī)軸已定向于電角度相位的-30度方向,因此存入的驅(qū)動(dòng)器內(nèi)部EEPROM等非易失性存儲(chǔ)器中的位置檢測(cè)值就對(duì)應(yīng)電機(jī)電角度的-30度相位。此后,驅(qū)動(dòng)器將任意時(shí)刻由旋變解析出來(lái)的與電角度相關(guān)的絕對(duì)位置值與這個(gè)存儲(chǔ)值做差,并根據(jù)電機(jī)極對(duì)數(shù)進(jìn)行必要的換算,再加上-30度,就可以得到該時(shí)刻的電機(jī)電角度相位。
這種對(duì)齊方式需要伺服驅(qū)動(dòng)器的在國(guó)內(nèi)和操作上予以支持和配合方能實(shí)現(xiàn),而且由于記錄電機(jī)電角度初始相位的EEPROM等非易失性存儲(chǔ)器位于伺服驅(qū)動(dòng)器中,因此一旦對(duì)齊后,電機(jī)就和驅(qū)動(dòng)器事實(shí)上綁定了,如果需要更換電機(jī)、旋變、或者驅(qū)動(dòng)器,都需要重新進(jìn)行初始安裝相位的對(duì)齊操作,并重新綁定電機(jī)和驅(qū)動(dòng)器的配套關(guān)系。
注意
1.以上討論中,所謂對(duì)齊到電機(jī)電角度的-30度相位的提法,是以UV反電勢(shì)波形滯后于U相30度的前提為條件。
2.以上討論中,都以UV相通電,并參考UV線反電勢(shì)波形為例,有些伺服系統(tǒng)的對(duì)齊方式可能會(huì)采用UW相通電并參考UW線反電勢(shì)波形。
3.如果想直接對(duì)齊到電機(jī)電角度0度相位點(diǎn),也可以將U相接入低壓直流源的正極,將V相和W相并聯(lián)后接入直流源的負(fù)端,此時(shí)電機(jī)軸的定向角相對(duì)于UV相串聯(lián)通電的方式會(huì)偏移30度,以文中給出的相應(yīng)對(duì)齊方法對(duì)齊后,原則上將對(duì)齊于電機(jī)電角度的0度相位,而不再有-30度的偏移量。這樣做看似有好處,但是考慮電機(jī)繞組的參數(shù)不一致性,V相和W相并聯(lián)后,分別流經(jīng)V相和W相繞組的電流很可能并不一致,從而會(huì)影響電機(jī)軸定向角度的準(zhǔn)確性。而在UV相通電時(shí),U相和V相繞組為單純的串聯(lián)關(guān)系,因此流經(jīng)U相和V相繞組的電流必然是一致的,電機(jī)軸定向角度的準(zhǔn)確性不會(huì)受到繞組定向電流的影響。
4.不排除伺服廠商有意將初始相位錯(cuò)位對(duì)齊的可能性,尤其是在可以提供絕對(duì)位置數(shù)據(jù)的反饋系統(tǒng)中,初始相位的錯(cuò)位對(duì)齊將很容易被數(shù)據(jù)的偏置量補(bǔ)償回來(lái),以此種方式也許可以起到某種保護(hù)自己產(chǎn)品線的作用。只是這樣一來(lái),用戶就更加無(wú)從知道伺服電機(jī)反饋元件的初始相位到底該對(duì)齊到哪兒了。用戶自然也不愿意遇到這樣的供應(yīng)商。
電角度相位對(duì)齊的基本方法總結(jié) 1.波形觀察法
適用于帶換相信號(hào)的增量式編碼器、正余弦編碼、旋轉(zhuǎn)變壓器。
1) 以示波器直接觀察UV線反電勢(shì)波形過(guò)零點(diǎn)與傳感器的U相信號(hào)上升沿/Z信號(hào)、或Sin信號(hào)過(guò)零點(diǎn)、或Sin包絡(luò)信號(hào)過(guò)零點(diǎn)的相位對(duì)齊關(guān)系,以此方法可以將傳感器的上述信號(hào)邊沿或過(guò)零點(diǎn)對(duì)齊到-30度電角度相位;
2) 以阻值范圍適當(dāng)?shù)娜齻(gè)等值電阻構(gòu)成星形,接入永磁伺服電機(jī)的UVW動(dòng)力線,以示波器觀察U相動(dòng)力線與星形等值電阻的中心點(diǎn)之間的虛擬U相反電勢(shì)波形與與傳感器的U相信號(hào)上升沿/Z信號(hào)、或Sin信號(hào)過(guò)零點(diǎn)、或Sin包絡(luò)信號(hào)過(guò)零點(diǎn)的相位對(duì)齊關(guān)系,以此方法可以將傳感器的上述信號(hào)邊沿或過(guò)零點(diǎn)對(duì)齊到電角度相位0點(diǎn);
2.轉(zhuǎn)子定向法
適用于帶換相信號(hào)的增量式編碼器、正余弦編碼、旋轉(zhuǎn)變壓器的波形對(duì)齊,或者絕對(duì)式編碼器和正余弦編碼、旋轉(zhuǎn)變壓器等按可提供單圈絕對(duì)位置數(shù)值信息對(duì)齊。
1) 將U相接入低壓直流源的正極,V相接入直流源的負(fù)端,定向電機(jī)軸
此后一邊調(diào)整傳感器與電機(jī)的相對(duì)位置關(guān)系,一邊以示波器觀察傳感器信號(hào),直到U相信號(hào)上升沿/Z信號(hào)、或Sin信號(hào)過(guò)零點(diǎn)、或Sin包絡(luò)信號(hào)過(guò)零點(diǎn)準(zhǔn)確復(fù)現(xiàn),以此方法可以將傳感器的上述信號(hào)邊沿或過(guò)零點(diǎn)對(duì)齊到 -30度電角度相位;
也可以一邊調(diào)整傳感器與電機(jī)的相對(duì)位置關(guān)系,一邊設(shè)法觀察單圈絕對(duì)位置的數(shù)值信息,直到數(shù)據(jù)零位準(zhǔn)確復(fù)現(xiàn),以此方法也可以將傳感器的單圈絕對(duì)位置零點(diǎn)對(duì)齊到 -30度電角度相位;
如果事先估算出 -30度電角度對(duì)應(yīng)的單圈絕對(duì)位置的數(shù)值,還可以調(diào)整傳感器與電機(jī)的相對(duì)位置關(guān)系,直到該數(shù)值準(zhǔn)確復(fù)現(xiàn),就可以將單圈絕對(duì)位置零點(diǎn)直接對(duì)齊到電角度相位0點(diǎn)(該方法可能比將在下一面 2) 中總結(jié)的后一條方法精確度更好一些);
當(dāng)然也完全可以不調(diào)整傳感器與電機(jī)的相對(duì)位置關(guān)系,而是簡(jiǎn)單地隨機(jī)安裝編碼器,把讀取到的單圈絕對(duì)位置信息作為初始安裝的偏置值,通過(guò)后續(xù)運(yùn)算,實(shí)現(xiàn)單圈絕對(duì)位置信息和電角度相位零點(diǎn)的邏輯對(duì)齊,該方法的人工操作要求最低。
2) 將U相接入低壓直流源的正極,將V相和W相并聯(lián)后接入直流源的負(fù)端,定向電機(jī)軸
此后一邊調(diào)整傳感器與電機(jī)的相對(duì)位置關(guān)系,一邊以示波器觀察傳感器信號(hào),直到U相信號(hào)上升沿/Z信號(hào)、或Sin信號(hào)過(guò)零點(diǎn)、或Sin包絡(luò)信號(hào)過(guò)零點(diǎn)準(zhǔn)確復(fù)現(xiàn),以此方法可以將傳感器的上述信號(hào)邊沿或過(guò)零點(diǎn)對(duì)齊到電角度相位0點(diǎn);
也可以一邊調(diào)整傳感器與電機(jī)的相對(duì)位置關(guān)系,一邊設(shè)法觀察單圈絕對(duì)位置的數(shù)值信息,直到數(shù)據(jù)零位準(zhǔn)確復(fù)現(xiàn),以此方法也可以將傳感器的上述信號(hào)邊沿或過(guò)零點(diǎn)對(duì)齊到電角度相位0點(diǎn)。
[ 此帖被王銳在2009-01-31 19:30重新編輯 ]